1、两种重要的、针对函数的运算:求导与积分。它们的运算结果也是一个函数。先说求导。对于函数 f(x) ,它的导函数 (即求导运算的结果,简称导数)记作 f′(x) 。简单来说,f′(x0) 就是f(x) 在 x0 这点的切线斜率。即, f′(x) 是 f(x) 的切线斜率关于切点横坐标的函数。
为了方便描述,引入一个表示「微小变化量」(自己起的名字)的符号。以后默认用 dx 表示变量 x 的变化量( dy 表示变量 y 的变化量,以此类推),且 dx 趋近于 0 。那么对于 x0 和它的函数值 f(x)=y ,设当 x 增加了 dx 时 y 增加了 dy 。由于这个变化量是「微小」(趋近于 0 )的,所以 x 和 x+dx 之间的函数图象可以近似成一条直线,它的斜率就是 dydx 。因此,有时也把导函数写成 f′(x)=dydx 。
注意,不同的 x 会造成 dy 取不同的值。有点懵?先从最简单的例子,一次函数说起。显然,无论 x 如何改变,也无论 dx 取何值(哪怕不趋近于 0 ) ,dydx 都是一个定值,即这个一次函数的斜率 k (换句话说,这个一次函数处处的切线都与它本身重合)。因此,一次函数的导数是一个常函数 f′(x)=k 。
再举一个稍复杂的例子。对于 f(x)=x2 ,可以这样求出它的导函数:f′(x)=dydx=f(x+dx)?f(x)dx=(x+dx)2?x2dx=2dx?x+dx2dx=2x+dx由于 dx 趋近于 0 ,所以 f′(x)=2x 。于是我们成功算出了 f(x)=x2 的导数是 f′(x)=2x 。不妨再拓展一下,证明 f(x)=xk 的导数是 f′(x)=kxk?1 。做法和刚才类似(其中用了一次二项式定理):f′(x0)=f(x0+dx)?f(x0)dx=(x0+dx)k?xk0dx=∑ki=0Cikxi0dxk?i?xk0dx=∑k?1i=0Cikxi0dxk?idx=∑i=0k?1Cikxi0dxk?i?1。
到这里似乎不知道怎么办了?别忘了 dx 趋近于 0 ,所以只有 k?i?1=0 即 i=k?1 这一项是非 0 的!激动.jpg 。所以,f′(x0)=kxk?10 。x0 是任意的,所以 f′(x)=kxk?1 。
2、导数的加减:h(x)=f(x)+g(x),h′(x)=f′(x)+g′(x)。设 yf=f(x) ,yg=g(x) ,yh=h(x) (类似的记号下面不再赘述) ,同时别忘了 f′(x)=dyfdx , g′(x)=dygdx ,则有:∵yh=yf+yg,(yh+dyh)=(yf+dyf)+(yg+dyg)∴dyh=dyf+dyg=f′(x)dx+g′(x)dx=(f′(x)+g′(x))dx两边同时除以 dx ,得到 h′(x)=dyhdx=f′(x)+g′(x) 。
3、导数的乘法:h(x)=f(x)g(x),h′(x)=f(x)g′(x)+f′(x)g(x)口诀:「左乘右导,右乘左导」证明如下:∵yh=yf?yg,(yh+dyh)=(yf+dyf)?(yg+dyg)∴dyh=yf?yg+yf?dyg+yg?dyf+dyf?dyg?yh=yf?dyg+yg?dyf+dyf?dyg=f(x)?g′(x)dx+g(x)?f′(x)dx+f′(x)dx?g′(x)dx两边同时除以 dx 得:h′(x)=f(x)g′(x)+f′(x)g(x)+f′(x)g′(x)dx同样,带 dx 的项趋近于 0 ,因此 h′(x)=f(x)g′(x)+f′(x)g(x) 。
4、链式法则:若 h(x)=f(g(x)) ,则 h′(x)=f′(g(x))?g′(x) 。当自变量从 x0 变成 x0+dx ,则 yf 的变化量是 f′(x0)dx 。现在,g 的自变量的变化量是 dx ,yg 的变化量是 g′(x)dx ,所以 yf 的变化量是 f′(g(x))?g′(x)dx (注意 f 的自变量的初值是 g(x) 不是 x )。因此 h′(x)=f′(g(x))?g′(x) 。
5、导数的除法:若 h(x)=f(x)g(x) ,则 h′(x)=g(x)f′(x)?f(x)g′(x)g(x)2。
6、证明:∵yh=yfyg,(yh+dyh)=yf+dyfyg+dyg∴dyh=yf+dyfyg+dyg?yfyg=yg(yf+dyf)?yf(yg+dyg)yg(yg+dyg)=g(x)f(x)+g(x)f′(x)dx?f(x)g(x)?f(x)g′(x)dxg(x)2+g(x)g′(x)dx=g(x)f′(x)dx?f(x)g′(x)dxg(x)2+g(x)g′(x)dx。两边同时除以 x ,得到:h′(x)=g(x)f′(x)?f(x)g′(x)g(x)2+g(x)g′(x)dx,由于 dx 趋于 0 ,所以:h′(x)=g(x、f′(x)?f(x)g′(x)g(x)2。
1、建立坐标系,以圆的圆心为原点,建立一个坐标系。
2、将圆沿y轴划分成条状,设圆的半径为R,离x轴任意y处,条状圆宽为dy,那么该条状(矩形)的面积为2√(R^2-y^2)dy。
3、对这个式子进行积分,下限为-R,上限为R,可以计算出圆的面积为πR^2。
1、课后复习工作一定一定要做好,这时候笔记就派上用场啦。复习完笔记之后再把课本上面相关的练习做一遍,熟记于心。学习永无止境,我们也不应停下脚步。
2、心态最重要啦,千万不要把微积分当成是洪水猛兽。把心态放好来,正视自己在学习过程中遇到的困难。不懂就问,老师,同学们,他们都会很乐意帮你解答的。不要把微积分想象得很难,只要你肯学,肯认真学,那么你一定会取得优异的成绩的。
1、微积分的基本概念和内容包括微分学和积分学。
2、微分学的主要内容包括:极限理论、导数、微分等。
3、积分学的主要内容包括:定积分、不定积分等。
4、从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。
5、积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,定积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。
6、一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。
1、微积分(Calculus)是研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
2、微积分学的创立,极大地推动了数学的发展,过去很多用初等数学无法解决的问题,运用微积分,这些问题往往迎刃而解,显示出微积分学的非凡威力。前面已经提到,一门学科的创立并不是某一个人的业绩,而是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的,微积分也是这样。客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。
3、由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。