您的位置: 首页 >黄历生活 >学习 >因式分解技巧
因式分解技巧
更新时间:2025-05-25 11:24:57

(一)因式分解技巧

1、符号变换

有些多项式有公因式或者可用公式,但是结构不太清晰的情况下,可考虑变换部分项的系数。

【例】(m+n)(x-y)+(m-n)(y-x)

技巧:y-x= -(x-y)

原式=(m+n)(x-y)-(m-n)(x-y)

=(x-y)(m+n-m+n)

=2n(x-y)

小结:符号变化常用于可用公式或有公因式,但公因式或者用公式的条件不太清晰的情况下。

2、系数变换

有些多项式,看起来可以用公式法,但不变形的话,则结构不太清晰,这时可考虑进行系数变换。

【例】分解因式4x2-12xy+9y2

原式=(2x)2-2(2x)(3y)+(3y)2

=(2x-3y)2

小结:系数变化常用于可用公式,但用公式的条件不太清晰的情况下。

3、指数变换

有些多项式,各项的次数比较高,对其进行指数变换后,更易看出多项式的结构。

【例】分解因式x4-y4

技巧:把x4看成(x2)2,把y4看成(y2)2,然后用平方差公式。

原式=(x2)2-(y2)2

=(x2+y2)(x2-y2)

=(x2+y2)(x+y)(x-y)

小结:指数变化常用于整式的最高次数是4次或者更高的情况下,指数变化后更易看出各项间的关系。

(二)因式分解十字相乘法是什么

1、十字相乘法是因式分解中十四种方法之一,另外十三种分别都是:提公因式法,公式法,双十字相乘法,轮换对称法,拆添项法,配方法,因式定理法,换元法,综合除法,主元法,特殊值法,待定系数法,二次多项式。

2、十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式运算来进行因式分解。

(三)因式分解方法

1、提公因式法、分组分解法、待定系数法、十字分解法、双十字相乘法、对称多项式等等。

2、一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。

3、分组分解法指通过分组分解的方式来分解提公因式法和公式分解法无法直接分解的因式,分解方式一般分为“1+3”式和“2+2”式。

4、待定系数法是初中数学的一个重要方法。用待定系数法分解因式,就是先按已知条件把原式假设成若干个因式的连乘积,这些因式中的系数可先用字母表示,它们的值是待定的,由于这些因式的连乘积与原式恒等,然后根据恒等原理,建立待定系数的方程组,最后解方程组即可求出待定系数的值。

5、十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x2+(a+b)x+ab的逆运算来进行因式分解。

6、双十字相乘法是一种因式分解方法。对于型如 Ax2+Bxy+Cy2+Dx+Ey+F 的多项式的因式分解,常采用的方法是待定系数法。这种方法运算过程较繁。对于这问题,若采用“双十字相乘法”(主元法),就能很容易将此类型的多项式分解因式。

7、一个多元多项式,如果把其中任何两个元互换,所得的结果都与原式相同,则称此多项式是关于这些元的对称多项式。x2+y2+z2,xy+yz+zx都是关于元x、y、z的对称多项式。