1、三角形的高=三角形的面积乘2除以三角形的底。
2、三角形是由三条线段顺次首尾相连,组成的一个闭合的平面图形是最基本的多边形。一般用大写英语字母为顶点标号,用小写英语字母表示边,用阿拉伯数字表示角。
3、等边三角形(又称正三边形),为三边相等的三角形,其三个内角相等,均为60°,它是锐角三角形的一种。等边三角形也是最稳定的结构。等边三角形是特殊的等腰三角形,所以等边三角形拥有等腰三角形的一切性质。
1、单利计息:年利率=1+月份*每月利率
复利计息:年利率=(1+月利率)的n次方 ,n为月数。
2、年利率总额是指本息合计金额,按照单利和复利两种方式计算。
3、年利率是指一年的存款利率。所谓利率,是“利息率”的简称,就是指一定期限内利息额与存款本金或贷款本金的比率。通常分为年利率、月利率和日利率三种。年利率按本金的百分之几表示,月利率按千分之几表示,日利率按万分之几表示。
1、标准型矩阵B可以由A经过一系列初等变换得到
2、经过多次变换以后,得到一种最简单的矩阵,就是这个矩阵的左上角是一个单位矩阵,其余元素都是0,那么这个矩阵就是原来矩阵的等价标准型。
3、如果矩阵B可以由A经过一系列初等变换得到 那么矩阵A与B是等价的。
经过多次变换以后,得到一种最简单的矩阵,就是这个矩阵的左上角是一个单位矩阵,其余元素都是0,那么这个矩阵就是原来矩阵的等价标准型。
1、先把副对角线元素相乘,再乘以一个符号。如果是偶数阶行列式,则为+,奇数阶为-。对角阵是指只有对角线上有非0元素的矩阵,或说除了主对角线上的元素外,其余元素都等于零的方阵。
2、通常把对角阵分为正对角阵和反对角阵。行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或|A|。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。
1、使用分解质因数法:把几个数分解成几个质因数的积,然后找相同的质因数,再把这几个质因数相乘,积就是他们的最大公因数。
2、使用短除法:用短除法对要求公因数的数组一直往下除,除到不能再被整除为止,这样在短除法运算过程中产生的除数就是要求的公因数了,其中最大的就是最大公因数。