您的位置: 首页 >黄历生活 >学习 >天文望远镜是谁发明的
天文望远镜是谁发明的
更新时间:2025-05-26 12:12:10

(1)天文望远镜是谁发明的

1、汉斯·李波尔,荷兰人,发明家,望远镜的发明者,1608年荷兰米德尔堡眼镜师汉斯·李波尔赛造出了世界上第一架望远镜。

2、天文望远镜(AstronomicalTelescope)是观测天体的重要工具,可以毫不夸张地说,没有望远镜的诞生和发展,就没有现代天文学。随着望远镜在各方面性能的改进和提高,天文学也正经历着巨大的飞跃,迅速推进着人类对宇宙的认识。

3、天文望远镜上一般有两只镜筒,大的是主镜,是观测目标所用的;小的叫寻星镜,是寻找目标所用的,也叫瞄准镜。目镜是单独的个体,是决定放大倍率的物品,目镜上都会有F值,这是目镜的焦距,用主镜的F值除以当前使用的目镜的F值,就是当前的放大倍率,记住,放大倍率是标准,6厘米口径的望远镜的极限放大倍率是120倍左右,8厘米的倍率最大160倍左右,超过这个范围就会看不清楚物体。

(2)天文望远镜基础知识,事前一定要充分做好调研

望远镜的光学性能 在天文观测的对象中,有的天体有视面,有的没有可分辨的视面;有的天体光极强,有的又特微弱;有的是自己发光,有的是反射光。观测者应根据观测目的,选用不同的望远镜,或采用不同的方法进行观测;一般说来,普及性的天文观测多属于综合性的,要考虑“一镜多用”。选择天文望远镜时,一定要充分了解它的基本光学性能。口径--指物镜的有效直径,常用D来表示;相对口径--指物镜的有效口径和它的焦距之比,也称为焦比,常用A表示;即A=D/F。一般说来,折射望远镜的相对口径都比较小,通常在1/15~1/20,而反射望远镜的相对口径都比较大,通常在1/3.5~1/5。观测有一定视面的天体时,其视面的线大小和F成正比,其面积与F2成正比。象的光度与收集到的光量成正比,即与D2成正比,和象的面积成反比,即与F2成反比。放大率--指目视望远镜的物理量,即角度的放大率。它等于物镜焦距和目镜焦距之比。不少人提到天文望远镜时,首先考虑的就是放大倍率。其实,天文望远镜和显微镜不一样,地面天文观测的效果如何,除仪器的优劣外,还受地球大气的明晰度和宁静度的影响,受观测地的环境等诸因素的制约。而且,一架天文望远镜有几个不同焦距的目镜,也就是有几个不同的放大倍率可用。观测时,绝不是以最大倍率为最佳,而应以观测目标最清晰为准。分辨角--指望远镜能够分辨出的最小角距。目视观测时,望远镜的分辨角=140(角秒)/D(毫米),D为物镜的有效口径。视场--指天文望远镜所见的星空范围的角直径。贯穿本领--指在晴朗的夜晚,望远镜在天顶方向能看到最暗弱的恒星星等。贯穿本领主要和望远镜的有效口径有关。例如,南京天文仪器广生产的120折反射天文望远镜的光学性能为:主镜的有效口径为120mm,焦距为1500mm,相对口径为1/12.5,目镜放大倍率有:37.5倍,60倍,100倍,200倍,理论分辨角为1"一2",目视极限星等为12等,视场小于10。它的寻星镜物镜有效口径为35mm,焦距为175mm,放大率为7倍,视场为500。

天文望远镜的目镜 当人们了解了天文望远镜的基本光学性能以后,有人往往只注意物镜,而忽视了做为望远镜终端设备之一的目镜。其结果常常使再好的望远镜也不能充分发挥应有的本领,只能望天兴叹。天文望远镜的目镜主要有两个作用:其一,将物镜所成的像放大,这对于观测有视面的天体和近距双星是十分重要的;其二,使出射光束为平行光,使观测者观测起来舒适省力。目镜的种类很多,比较常用的有:惠更斯目镜,用字母H表示,MH或HM表示惠更斯目镜的改进型,这类目镜适用于低倍率或中倍率的观测。冉斯登目镜,以字母R表示,适于用作装有十字丝或标尺的目镜,用在低倍率或中倍率的测量性观测。凯尔纳目镜,以字母K表示,是冉斯登目镜的改进型,消除了冉斯登目镜的色差,这种目镜,视场大,常用在低倍率观测上,如彗星或大面积的天体。斯坦海尔的单心目镜,蔡斯的无畸变目镜,阿贝无畸变目镜,希克无畸变目镜都用在高放大率的观测上,如对行星或月球表面细节的观测等。一架天文望远镜应备有多种目镜,这样才能便于不同的观测,也才能最大限度地发。挥它应有的作用。曾见到这样一个情况:某部门从国外订购一架较好的天文望远镜,但是只有两个目镜。可是说明书中介绍它有多种目镜。为什么只有两个呢?卖方说,买方订货时设写明。这是一个教训。因此,订购天文望远镜时,事前一定要充分做好调研,有完整可靠的信息,有比较内行的人把关,认真审核好订货程序才行。

寻星镜和导星镜 天文望远镜的主镜担负着观测的主角。但是,许多天文观测不是光靠主镜就能全部顺利完成的。它也需要有助手,这就是寻星镜或导星镜。为了能迅速地搜寻到待观测的天体,常常在主镜旁附设一个小型天文望远镜,它就是寻星镜。寻星镜一股都采用折射式的天文望远镜。它的光轴与主镜光轴平行,这样才能保持与主镜的目标一致。寻星镜物镜的口径一般在5~10厘米左右,视场在30~50左右,放大率在7~20倍左右,焦平面处装有供定标用的分划板。观测时,先用寻星镜找到待观测的天体,将该天体调到,视场中央。这时,该天体自然也就在主镜视场中央。主镜在进行较长时间的观测时,为了及时纠正跟踪中的误差,在主镜旁设一个起监视作用的望起镜,它就叫导星镜。天文普及用的望远镜也就用导星镜代替了导星镜。 望远镜的装置与跟踪一架理想的天文望远镜不仅应有优良的光学系统,还必须解决好一系列机械结构问题。比如说,镜筒如何架起来呢?为了能观测到地平上任意天体,根据对轴线方向的选择不同,通常天文望远镜的装置分为两大类:地平装置和赤道装置。在地平装置中,镜的是天体的地平经度,沿水平轴变化时,表示的是天体的地平纬度。由于天球的周日视运动,天体在地平坐标中,两个量都随时而变,表示的只是瞬时位置。因此,一般说来,地平装置不便于做较长时间的连续观测。赤道装置就解决了这个问题。它的一条轴和天轴平行,叫极轴。另一条轴和极轴垂直,叫赤纬轴。当镜筒绕极轴旋转时,这是对角的变化,绕赤纬轴旋转时,是赤纬的变化。天体的赤纬不随周日运动而变化,是常量。因此,只要使镜筒跟随着天体绕极助运动即可达到使天体保持在视场内的目的。这就是跟踪天体的基本原理。显然,这就是克服由地球自转引起的相对位置变化。地球以每4分钟10的速度由西往东自转着,跟踪天体也应以每4分公10的匀速从东往西绕极轴运动。如何使镜筒这样转动呢?驱动跟踪装置的机械系统叫转仪钟。本世纪以前的转仪钟,其动力靠链条式的重锤或发条提供,转仪钟的速度靠离心调速器来控制。现在转仪钟的动力靠马达带动,速度由天文钟或无线电振荡器来控制。导星就是弥补跟踪中的误差问题。

(3)天文望远镜原理

1、天文望远镜的工作原理是物镜(凸透镜)聚光成像,经过目镜(凸透镜)放大。由物镜聚光,然后经过目镜放大,物镜目镜都是都是双分离结构,以便使成像质量有所提高。增大单位面积上的光强,从而使得人们可以发现更暗弱的天体和更多的细节。射入你眼睛的就是几乎平行光,而你看到的是被目镜放大了的虚像。是把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统。一般分三种:

2、折射望远镜,是用透镜作物镜的望远镜。分为两种类型:由凹透镜作目镜的称伽利略望远镜;由凸透镜作目镜的称开普勒望远镜。因单透镜物镜色差和球差都相当严重,现代的折射望远镜常用两块或两块以上的透镜组作物镜。

3、反射望远镜,是用凹面反射镜作物镜的望远镜。可分为牛顿望远镜、卡塞格林望远镜等几种类型。反射望远镜的主要优点是不存在色差,当物镜采用抛物面时,还可消去球差。但为了减小其它像差的影响,可用视场较小。对制造反射镜的材料只要求膨胀系数较小、应力小和便于磨制。

4、折反射望远镜,是在球面反射镜的基础上,再加入用于校正像差的折射元件,可以避免困难的大型非球面加工,又能获得良好的像质量。比较著名的有施密特望远镜它在球面反射镜的球心位置处放置一施密特校正板。它是一个面是平面,另一个面是轻度变形的非球面,使光束的中心部分略有会聚,而外围部分略有发散,正好矫正球差和彗差。